10. Division of Polynomials

• Polynomial

An algebraic expression in which the exponents of the variables are non-negative integers are called polynomials. For example, $3x^4 + 2x^3 + x + 9$, $3x^4$ etc are polynomials.

- Constant polynomial: A constant polynomial is of the form p(x) = k, where k is a real number. For example, -9, 10, 0 are constant polynomials.
- **Zero polynomial:** A constant polynomial '0' is called zero polynomial.

General form of a polynomial:

A polynomial of the form $p(x) = a_n x^n + a_{n-1} x^{n-1} + ... + a_1 x + a_0$, where $a_0, a_1 ... a_r$ are constants and $a_n \neq 0$.

Here, $a_0, a_1, \dots a_n$ are the respective coefficients of $x^0, x^1, x^2, \dots x^n$ and n is the power of the variable x. $a_n x^n, a_{n-1} x^{n-1} - a_0 \text{ and } a_0 \neq 0 \text{ are called the terms of } p(x).$

• Classification of polynomials on the basis of number of terms

- A polynomial having one term is called a monomial e.g. 3x, $25t^3$ etc.
- A polynomial having two terms is called a binomial e.g. 2t 6, $3x^4 + 2x$ etc.
- A polynomial having three terms is called a trinomial. e.g. $3x^4 + 8x + 7$ etc.

• Degree

The degree of a polynomial is the highest exponent of the variable of the polynomial. For example, the degree of polynomial $3x^4 + 2x^3 + x + 9$ is 4.

The degree of a term of a polynomial is the value of the exponent of the term.

• Classification of polynomial according to their degrees

- A polynomial of degree one is called a linear polynomial e.g. 3x + 2, 4x, x + 9.
- A polynomial of degree two is called a quadratic polynomial. e.g. $x^2 + 9$, $3x^2 + 4x + 6$.
- A polynomial of degree three is called a cubic polynomial e.g. $10x^3 + 3$, $9x^3$.

Note: The degree of a non-zero constant polynomial is zero and the degree of a zero polynomial is not defined.

• Division of a polynomial by a monomial using long division method

Example: Divide $x^4 - 2x^3 - 2x^2 + 7x - 15$ by x - 2. Solution:

Divison of polynomials by monomials also satisfy Division algorithm i.e., $\mathbf{Dividend} = \mathbf{Divisor} \times \mathbf{Quotient} + \mathbf{Remainder}$

It can be easily verified that here $(x^4 - 2x^3 - 2x^2 + 7x - 15) = (x - 2)(x^3 - 2x + 3) + (-9)$.